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Inspectoratul Școlar Județean Timiș        Societatea de Științe Matematice din România 
 

 
Olimpiada Naţională de Matematică  

Etapa Locală, județul Timiș 
5.02.2026 

 
 Clasa a X-a  

Barem de corectare și notare 
 

 
 

1. Dacă 𝑎, 𝑏 ∈ ℝ și funcția 𝑓: ℝ → [𝑎, 𝑏] , 𝑓(𝑥) =
௫

𝑥2ି௫ାଵ
 este surjectivă, determinați  

     lungimea intervalului [𝑎, 𝑏] . 

 
Soluție:  
 

Dacă 𝑓 este surjectivă atunci 𝐼𝑚𝑓 = [𝑎, 𝑏] .............................................................5p 

𝐼𝑚𝑓 = {𝑦 ∈ ℝ|∃𝑥 ∈ℝ  𝑎. î. 𝑓(𝑥) = 𝑦 } =   

=  ቄ𝑦 ∈ ℝ|∃𝑥 ∈ℝ  𝑎. î.   
𝑥

𝑥2 − 𝑥 + 1
 = 𝑦 ቅ = 

=  {𝑦 ∈ ℝ|∃𝑥 ∈ℝ  𝑎. î.    𝑥2𝑦 − 𝑥(𝑦 + 1) + 𝑦 = 0} = 

=  {𝑦 ∈ ℝ|∃𝑥 ∈ℝ  𝑎. î.    𝑥2𝑦 − 𝑥(𝑦 + 1) + 𝑦 = 0} = 

=  {𝑦 ∈ ℝ|∆= (𝑦 + 1)ଶ − 4𝑦ଶ ≥ 0} =   

=  {𝑦 ∈ ℝ|∆= −3𝑦ଶ + 2𝑦 + 1 ≥ 0} =   

= ቂ−
ଵ

ଷ
, 1ቃ................................................................................................................10p 

Lungimea intervalului [𝑎, 𝑏] = ቂ−
ଵ

ଷ
, 1ቃ   este  

ସ

ଷ
.......................................................5p 
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2. a) Să se arate că dacă 𝑡 > 0 atunci ට
ଶ

௧ାଶ
+ ට

௧

௧ାଶ
≤ ට

௧మାସ

ଶ௧
 . 

    b) Să se arate că pentru oricare două numere reale 𝑎, 𝑏 din intervalul (0,1) sau (1, ∞)  

    are loc inegalitatea 
ଵ

ටଵା௟௢௚ೌ√௕

+
ଵ

ඥଵା௟௢௚್௔మ
≤ ට𝑙𝑜𝑔௔√𝑏 + 𝑙𝑜𝑔௕𝑎ଶ . 

Soluție:  
 

a) Din inegalitatea 
௔ା௕

ଶ
≤ ට

௔మା௕మ

ଶ
  ∀𝑎, 𝑏 > 0 se obține că 

    ට
ଶ

௧ାଶ
+ ට

௧

௧ାଶ
 ≤ 2 ∙ ට

మ

೟శమ
ା

೟

೟శమ

ଶ
  = √2    (1)  

 

Din inegalitatea 𝑎 +
ଵ

௔
≥ 2  ∀𝑎 > 0 se obține că 

 
௧మାସ

ଶ௧
=

௧

ଶ
+

ଶ

௧
≥ 2 ∀𝑡 > 0, deci ට

௧మାସ

ଶ௧
≥ √2  ∀𝑡 > 0  (2)  

Obține una din inegalitățile de mai sus .............................................................................5p 
Obține  cealaltă inegalitate și conform tranzitivității relației de inegalitate, obține 
inegalitatea cerută  .............................................................................................................5p 

 
b) Notăm 𝑙𝑜𝑔௔𝑏 = 𝑡, deoarece 𝑎, 𝑏 ∈ (0,1) sau 𝑎, 𝑏 ∈ (1, ∞) avem 𝑡 > 0 …..…… 

Din notație se obține 𝑙𝑜𝑔௔√𝑏 = 
ଵ

ଶ
𝑙𝑜𝑔௔𝑏 =

௧

ଶ
  și  𝑙𝑜𝑔௕𝑎ଶ = 2𝑙𝑜𝑔௕𝑎 =

ଶ

௟௢௚ೌ௕
=

ଶ

௧
  ……...5p 

 Cu această notație inegalitatea din enunț este echivalentă cu  

 
ଵ

ටଵା
೟

మ

+
ଵ

ටଵା
మ

೟

≤ ට
௧

ଶ
+

ଶ

௧
⇔  ට

ଶ

௧ାଶ
+ ට

௧

௧ାଶ
≤ ට

௧మାସ

ଶ௧
 adevărată din a) ..................................5p 
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3. a) Dacă 𝑎, 𝑏 ∈ ℚ, atunci 𝑎 √4

య
+ 𝑏 √2

య
∈ ℚ   ⟺   𝑎 = 𝑏 = 0. 

     b) Să se arate că există o infinitate de numere întregi 𝑎, 𝑏, 𝑐 astfel încât: 

(√4
య

+ √2
య

+ 3)(𝑎 √4
య

+ 𝑏 √2
య

+ 𝑐) ∈ ℤ. 
Soluție: 
 

a) Notăm 𝑥 = 𝑎 √4
య

+ 𝑏 √2
య . 

 
Dacă 𝑎 = 𝑏 = 0 rezultă evident că 𝑥 = 𝑎 √4

య
+ 𝑏 √2

య
= 0 ∈ ℚ.  

Demonstrăm și reciproca, adică dacă 𝑥 = 𝑎 √4
య

+ 𝑏 √2
య

∈ ℚ atunci 𝑎 = 𝑏 = 0 : ……….……..2p 
 

𝑥 ∈ ℚ ⇒  𝑥2 ∈ ℚ ⇒  𝑎2(√4
3

)2 + 2𝑎𝑏√4
3

√2
3

+ 𝑏2(√2
3

)2 = 2𝑎2√2
3

+ 4𝑎𝑏 + 𝑏2√4
3

∈ ℚ ⇒  
Dar 𝑎, 𝑏 ∈ ℚ ⇒ 4𝑎𝑏 ∈ ℚ deci 2𝑎ଶ √2

య
+ 𝑏ଶ √4

య
∈ ℚ și deci 

𝑎൫2𝑎ଶ √2
య

+ 𝑏ଶ √4
య

൯ = 2𝑎ଷ √2
య

+ 𝑎𝑏ଶ √4
య

∈ ℚ (1) 
 
𝑥 ∈ ℚ, 𝑏 ∈ ℚ ⇒   𝑏ଶ𝑥 ∈ ℚ ⟺ 𝑏ଶ൫𝑎√4

3
+ 𝑏√2

3
൯ =  𝑎𝑏ଶ√4

3
+ 𝑏ଷ √2

3
 ∈ ℚ (2) 

 
Din (1) și (2) obținem că diferența celor două numere este din ℚ adică 
 (𝑏ଷ − 2𝑎ଷ)√2

య
∈ ℚ …………………………………………………………………….……..5p 

 
Deoarece √2

య
∉ ℚ și (𝑏ଷ − 2𝑎ଷ) ∈ ℚ obținem că 𝑏ଷ − 2𝑎ଷ = 0. 

Dacă 𝑎 ≠ 0, atunci din egalitatea precedent se obține ቀ
௕

௔
ቁ

ଷ
= 2 ⇒

௕

௔
= √2

య
∉ ℚ,   contradicție. 

Deci 𝑎 = 0 și deci și 𝑏 = 0. ............................................................................................3p 
 

b) Se dezvoltă produsul și se grupează termenii: 
൫√4

య
+ √2

య
+ 3൯൫𝑎 √4

య
+ 𝑏 √2

య
+ 𝑐൯ = 

= 𝑎 ⋅ 2√2
య

+ 𝑏 ⋅ 2 + 𝑐 √4
య

+ 𝑎 ⋅ 2 + 𝑏 √4
య

+ 𝑐 √2
య

+ 3𝑎 √4
య

+ 3𝑏 √2
య

+ 3𝑐. 

= √4
య

(3𝑎 + 𝑏 + 𝑐) + √2
య

(2𝑎 + 3𝑏 + 𝑐) + (2𝑎 + 2𝑏 + 3𝑐) ……………………………..…….5p 
Pentru ca expresia să fie un număr întreg, coeficienții radicalilor trebuie să fie zero: 

ቄ
3𝑎 + 𝑏 + 𝑐 = 0

2𝑎 + 3𝑏 + 𝑐 = 0
 

Scăzând ecuațiile se obține: 
𝑎 − 2𝑏 = 0 ⇒ 𝑎 = 2𝑏. 
Înlocuind se obține: 
3(2𝑏) + 𝑏 + 𝑐 = 0 ⇒ 𝑐 = −7𝑏. 
Pentru 𝑏 = 𝑘 ∈ ℤ, obținem:  𝑎 = 2𝑘, 𝑏 = 𝑘, 𝑐 = −7𝑘 ……………………..………………..…3p 
 
Deci există deci o infinitate de astfel de triplete de numere întregi 𝑎, 𝑏, 𝑐 astfel încât: 
൫√4

య
+ √2

య
+ 3൯൫𝑎 √4

య
+ 𝑏 √2

య
+ 𝑐൯ ∈ ℤ … … ….………………………….……………………....2p 
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4. Fie numerele complexe 𝑧ଵ, 𝑧ଶ, 𝑧ଷ ∈ ℂ astfel încât |𝑧ଵ| = |𝑧ଶ| = |𝑧ଷ| = 1 și punctele 𝐴ଵ, 𝐴ଶ, 𝐴ଷ 
având afixele 𝑧ଵ, 𝑧ଶ și respectiv 𝑧ଷ. 

a) Dacă 𝐻 este punctul de afix 𝑧ଵ + 𝑧ଶ + 𝑧ଷ să se arate că 𝐻 este ortocentrul triunghiului 
𝐴ଵ𝐴ଶ𝐴ଷ. 

b) Știind că 𝑧ଵ + 𝑧ଶ + 𝑧ଷ = 1 , să se calculeze 
ଵ

௭భ
మబమఱ +

ଵ

௭మ
మబమఱ +

ଵ

௭య
మబమఱ. 

c) Știind că 𝑧ଵ
ଶ + 𝑧ଶ

ଶ + 𝑧ଷ
ଶ = 0 determinați |𝑧ଵ + 𝑧ଶ + 𝑧ଷ|. 

Soluție: 

a) Din |𝑧௞| = 1 obținem că 𝑧௞തതത =
ଵ

௭ೖ
  ………………………………………………………2p 

Demonstrăm că 𝐴ଵ𝐻 ⊥ 𝐴ଶ𝐴ଷ ⇔
௭ಹି௭భ

௭మି௭య
∈ 𝑖ℝ∗ ⇔ ቀ

௭ಹି௭భ

௭మି௭య
ቁ

തതതതതതതതതത
= −

௭ಹି௭భ

௭మି௭య
 .............................2p 

𝑧ு − 𝑧ଵ

𝑧ଶ − 𝑧ଷ
=

𝑧ଶ + 𝑧ଷ

𝑧ଶ − 𝑧ଷ
 

ቀ
௭ಹି௭భ

௭మି௭య
ቁ

തതതതതതതതതത
= ቀ

௭మା௭య

௭మି௭య
ቁ

തതതതതതതതത
=

௭మതതതା௭యതതത

௭మതതതି௭యതതത
=

భ

೥మ
ା

భ

೥య
భ

೥మ
ି

భ

೥య

= −
௭మା௭య

௭మି௭య
= −

௭ಹି௭భ

௭మି௭య
 ⇒ 𝐴ଵ𝐻 ⊥ 𝐴ଶ𝐴ଷ (1).....……....5p 

Analog se arată că 𝐴ଶ𝐻 ⊥ 𝐴ଵ𝐴ଷ. (2) 
Din (1) și (2) ⇒ 𝐻 este ortocentrul triunghiului 𝐴ଵ𝐴ଶ𝐴ଷ. ………………………………1p 
 

b) Din 𝑧ଵ + 𝑧ଶ + 𝑧ଷ = 1 obținem că  |𝑧ு| = 1 și cum |𝑧ଵ| = |𝑧ଶ| = |𝑧ଷ| = 1 deducem că 
punctele 𝐴ଵ, 𝐴ଶ, 𝐴ଷ, 𝐻 sunt pe un cerc de centru O și rază 1. Deci 𝐻 coincide cu unul din 
vîrfurile triunghiului 𝐴ଵ𝐴ଶ𝐴ଷ  adică triunghiul este dreptunghic ……………….…..........5p 
Presupunem că unghiul drept este în 𝐴ଵ ⇒ 𝑧ଶ + 𝑧ଷ = 0 ⇒ 𝑧ଶ = −𝑧ଷ și cum 𝑧ଵ = 1 

   Se obține 
ଵ

௭భ
మబమఱ +

ଵ

௭మ
మబమఱ +

ଵ

௭య
మబమఱ = 1 ....................................................................................5p 

c) Calculăm |𝑧ଵ + 𝑧ଶ + 𝑧ଷ|ଶ = |( 𝑧ଵ + 𝑧ଶ + 𝑧ଷ)ଶ|= 
 
= |𝑧ଵ

ଶ + 𝑧ଶ
ଶ + 𝑧ଷ

ଶ + 2𝑧ଵ𝑧ଶ + 2𝑧ଵ𝑧ଷ + 2𝑧ଶ𝑧ଷ| = |0 + 2(𝑧ଵ𝑧ଶ + 𝑧ଵ𝑧ଷ + 𝑧ଶ𝑧ଷ)|=  
 
= 2|(𝑧ଵ𝑧ଶ + 𝑧ଵ𝑧ଷ + 𝑧ଶ𝑧ଷ)| = 2ห(𝑧ଵ𝑧ଶ + 𝑧ଵ𝑧ଷ + 𝑧ଶ𝑧ଷ

തതതതതതതതതതതതതതതതതതതതതതതതത)ห=2ห(𝑧ଵ𝑧ଶ
തതതതതതത + 𝑧ଵ𝑧ଷതതതതതത + 𝑧ଶ𝑧ଷതതതതതത)ห =  

 

= 2 ቚ
ଵ

௭భ௭మ
+

ଵ

௭భ௭య
+

ଵ

௭మ௭య
ቚ = 2 ቚ

௭భା௭మା௭య

௭భ௭మ௭య
ቚ = 2|𝑧ଵ + 𝑧ଶ + 𝑧ଷ| .............................................. 7p 

 
Deci |𝑧ଵ + 𝑧ଶ + 𝑧ଷ|ଶ = 2|𝑧ଵ + 𝑧ଶ + 𝑧ଷ| de unde obținem |𝑧ଵ + 𝑧ଶ + 𝑧ଷ| ∈ {0,2} ..........3p 


