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Inspectoratul Școlar Județean Timiș        Societatea de Științe Matematice din România 

 

 

Olimpiada Naţională de Matematică  

Etapa Locală, județul Timiș 

5.02.2026 

 

 Clasa a XII-a  

Barem de corectare și notare 

 

1. Determinaţi: 

a) ∫  
𝑥

1+𝑥+𝑒𝑥 𝑑𝑥, 𝑥 ∈ (0, ∞); 

b) ∫  
1

𝑥3+𝑥7 𝑑𝑥, 𝑥 ∈ (0, ∞). 

 

                                                                                            (Supliment Gazeta Matematică) 

Soluție: 

 

 a) 𝐼 = ∫  
𝑥

1+𝑥+𝑒𝑥 𝑑𝑥 = ∫  
1+𝑥+𝑒𝑥−(1+𝑒𝑥)

1+𝑥+𝑒𝑥 𝑑𝑥
…………………………………………………..5p 

I = ∫ 𝑑𝑥 − ∫  
(1+𝑥+𝑒𝑥)′

1+𝑥+𝑒𝑥 𝑑𝑥 = 𝑥 − ln(1 + 𝑥 + 𝑒𝑥) + C……………………………..…………..5p 

 b) I= ∫  
1

𝑥3+𝑥7 𝑑𝑥 = ∫  
1

𝑥3(1+𝑥4)
𝑑𝑥 = ∫  

1+𝑥4−𝑥4

𝑥3(1+𝑥4)
𝑑𝑥 = ∫  

1

𝑥3 𝑑𝑥 − ∫  
𝑥

1+𝑥4 𝑑𝑥
…......……….5p

I = −
1

2𝑥2 −
1

2
arctg𝑥2 + C……………………………………………………………………….5p 

 

2. Fie (𝐺,∙) un grup cu proprietatea că dacă 𝑎, 𝑏 ∈ 𝐺 , 𝑎2𝑏 = 𝑏𝑎2 atunci 𝑎𝑏 = 𝑏𝑎. Arătaţi că dacă 

|𝐺| = 2𝑛, atunci (𝐺,∙) este grup abelian. 

Soluție:  

Fie 𝐶𝑥 = {𝑏 ∈ 𝐺 ∣ 𝑥𝑏 = 𝑏𝑥, 𝑥 ∈ 𝐺}………………………..………………………...…………...…    5p 

𝐶𝑎 = {𝑏 ∈ 𝐺 ∣ 𝑎𝑏 = 𝑏𝑎}. Atunci are loc incluziunea 𝐶𝑎2 ⊆ 𝐶𝑎 …………….……………..…..….…. 5p 

Dar 𝐶𝑎 ⊆ 𝐶𝑎
2. Se obţine 𝐶𝑎 = 𝐶𝑎

2………………………………………….......………........……… ....5p 

Deci 𝐶𝑎 = 𝐶𝑎2 = 𝐶𝑎4 = ⋯ 𝐶𝑎2𝑛 = 𝐶𝑒, unde 𝑒 este elementul neutru al grupului …....……...........… 5p 

 

. 
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3. a) Arătaţi că orice primitivă a funcţiei 𝑓: [0, ∞) → ℝ, 𝑓(𝑥) = arctg𝑥 +
𝑥3

3
− 𝑥 este crescătoare; 

                b) Calculați ∫  
1

(𝑥2+𝑎2)(𝑥2+𝑏2)(𝑥2+𝑐2)
𝑑𝑥, 𝑥 ∈ ℝ, 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎, 𝑏, 𝑐 > 0, 𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑎. 

Soluție: 

a) Scrie 𝐹′(𝑥) = 𝑓(𝑥), ∀𝑥 ∈ [0, ∞), unde 𝐹: [0, ∞) → ℝ este o primitivă a funcţiei f pe [0, ∞). 

Atunci 𝐹′′(𝑥) = 𝑓′(𝑥) =
𝑥4

1+𝑥2  , ∀𝑥 ∈ [0, ∞)............................................................................... 5p 

Obține că 𝐹′(𝑥) ⩾ 0, ∀𝑥 ∈ [0, ∞), de unde concluzia. ............................................................... 5p 

 

b) Scrie integrala în forma: 

 ∫  
1

(𝑥2+𝑎2)(𝑥2+𝑏2)(𝑥2+𝑐2)
𝑑𝑥 =

1

𝑐2−𝑎2 ∫  (
1

(𝑥2+𝑎2)(𝑥2+𝑏2)
−

1

(𝑥2+𝑏2)(𝑥2+𝑐2)
) 𝑑𝑥…………….......... 2p 

 

Calculează integralele: 

∫
1

(𝑥2+𝑎2)(𝑥2+𝑏2)
𝑑𝑥 =

1

(𝑏2−𝑎2)
(

1

𝑎
arctg

𝑥

𝑎
−

1

𝑏
𝑎𝑥tg

𝑥

𝑏
) + 𝐶…………………………..................... 4p 

∫
1

(𝑥2+𝑏2)(𝑥2+𝑐2)
𝑑𝑥 =

1

(𝑏2−𝑎2)
(

1

𝑏
arctg

𝑥

𝑏
−

𝑎

𝑐
arctg

𝑥

𝑐
) + 𝐶............................................................  4p 

 

4. Fie 𝜀 = −
1

2
+ 𝑖

√3

2
 şi mulţimea 𝑄(𝜀) = {𝑎 + 𝑏𝜀|𝑎, 𝑏 ∈ ℚ}. 

a) Calculați (1 + 𝜀)𝑛, 𝑛 ∈ 𝑁; 

b) Arătaţi că inversul oricărui element nenul din(𝑄(𝜀),⋅) este din 𝑄(𝜀); 

c) Arătaţi că mulţimea 𝑀 = {𝑎2 − 𝑎𝑏 + 𝑏2 ∣ 𝑎, 𝑏 ∈ ℤ} este parte stabilă a lui 𝑍 în raport cu 

înmulţirea numerelor întregi. 

Soluție: 

a) Deoarece 𝜀3 = 1 se obţine că 𝜀 + 1 = −𝜀2……………………………………….......…….. 3p 

Atunci (1 + 𝜀)𝑛 = (−𝜀2)𝑛 = (−1)𝑛𝜀2𝑛, 𝑛 ∈ N………………………………………….......... 3p 

Finalizare……………………………………………….………………………..…….....…...... 4p 

b) Demonstrează egalitatea (𝑎 + 𝑏𝜀)(𝑎 + 𝑏𝜀2) = 𝑎2 − 𝑎𝑏 + 𝑏2 ≠ 0 ………………………... 5p 

Obţine că (𝑎 + 𝑏𝜀)−1 =
𝑎−𝑏

𝑎2−𝑎𝑏+𝑏2 −
𝑏

𝑎2−𝑎𝑏+𝑏2 𝜀, de unde concluzia………………….…….…. 5p 

c) Deduce că (𝑎2 − 𝑎𝑏 + 𝑏2)(𝑐2 − 𝑐𝑑 + 𝑑2) = (𝑎 + 𝑏𝜀)(𝑎 + 𝑏𝜀2)(𝑐 + 𝑑𝜀)(𝑐 + 𝑑𝜀2) = 

= (𝑎 + 𝑏𝜀)(𝑎 + 𝑏𝜀)(𝑐 + 𝑑𝜀)(𝑐 + 𝑑𝜀) =  |(𝑎 + 𝑏𝜀)(𝑐 + 𝑑𝜀)|2 = 𝑥2 − 𝑥𝑦 + 𝑦2 ………...….. 5p 

Notează cu  𝑥 = 𝑎𝑐 − 𝑏𝑑, 𝑦 = 𝑎𝑑 + 𝑏𝑐 − 𝑏𝑑, 𝑥, 𝑦 ∈ ℤ de unde rezultă concluzia...…………...5p 
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