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(30p) 1. Se consideră  matricea  𝐴 = (

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

) 𝜖𝑀4(ℝ).  

 Să se calculeze 𝐴𝑛 și determinantul matricei 𝐴𝑛, 𝑛 ∈ ℕ∗. 

 Soluție: 

Avem 𝐴 = −𝐼3 + 𝐵, unde 𝐵 = (

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

) 

2p 

Deoarece 𝐵 ⋅ (−𝐼3) = (−𝐼3) ⋅ 𝐵 => 

𝐴𝑛 = (−𝐼3 + 𝐵)𝑛 = 
=

n

k

k

nC
0

⋅ (−𝐼3)𝑛−𝑘 ⋅ 𝐵𝑘 = (−𝐼3)𝑛 + ( ) kn
n

k

k

nC
−

=

− 1
1

⋅ 𝐵𝑘 

 

4p 

Cum 𝐵2 = 4𝐵, presupunând că  𝐵𝑘 = 4𝑘−1 ⋅ 𝐵 ⇒ 𝐵𝑘+1 = 𝐵𝑘 ⋅ 𝐵 = 4𝑘 ⋅ 𝐵                    

şi conform metodei inducției matematice => 𝐵𝑛 = 4𝑛−1 ⋅ 𝐵,    𝑛 ∈ ℕ∗ .                    
 

5p 

 𝐴𝑛 = (−𝐼3)𝑛 + 
=

n

k

k

nC
1

( ( ) kn−
− 1 ⋅ 4𝑘−1 ⋅ 𝐵) = (−𝐼3)𝑛 +

𝐵

4 
=

n

k

k

nC
1

( ( ) kn−
− 1 ⋅ 4𝑘) =  

= (−𝐼3)𝑛 − (−1)𝑛 ⋅
𝐵

4
+

𝐵

4 
=

n

k

k

nC
0

( ( ) kn−
−1 ⋅ 4𝑘) = (−1)𝑛 (𝐼3 −

𝐵

4
) +

𝐵

4
⋅ (−1 + 4)𝑛 = 

= (−1)𝑛𝐼3 +
3𝑛−(−1)𝑛

4
𝐵                                                                                          

 

 

 

 

 

6p 

Dacă notăm  𝑎 =
3𝑛+3⋅(−1)𝑛

4
   și  𝑏 =

3𝑛−(−1)𝑛

4
   => 𝐴𝑛 = (

𝑎 𝑏 𝑏 𝑏
𝑏 𝑎 𝑏 𝑏
𝑏 𝑏 𝑎 𝑏
𝑏 𝑏 𝑏 𝑎

) ,  𝑛 ∈ ℕ∗ 

3p 

Calculează  𝑑𝑒𝑡𝐴 = −3,  de unde  7p 

𝑑𝑒𝑡(𝐴𝑛) = (𝑑𝑒𝑡(𝐴))
n

=(−3)𝑛 , 𝑛 ∈ ℕ∗. 
3p 
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(20p) 2. Să se calculeze   lim 
𝑛→∞

 
𝐶𝑛

1+
1

2
𝐶𝑛

2+⋯+
1

𝑛
𝐶𝑛

𝑛

  22+
1

2
⋅23+⋯+

1

𝑛
⋅2𝑛+1

 . 

Soluție: 

Notează  𝑥𝑛 = 𝐶𝑛
1 +

1

2
𝐶𝑛

2 + ⋯ +
1

𝑛
𝐶𝑛

𝑛 și 𝑦𝑛 = 22 +
1

2
⋅ 23 + ⋯ +

1

𝑛
⋅ 2𝑛+1                            

𝑦𝑛+1 − 𝑦𝑛 =
2𝑛+2

𝑛+1
> 0,  𝑛 ∈ ℕ∗ => (𝑦𝑛) 1n   este crescător .                                                               

4p 

 Cum  𝑦𝑛 >
2𝑛+1

𝑛+1
,    𝑛 ∈ ℕ∗   şi  =

+

+

→ 1

2
lim

1

n

n

n
 obţine  =

→
n

n
ylim ,  (𝑦𝑛) 1n   este nemărginit .                                                                               

2p 

𝑙𝑖𝑚
𝑛→∞

𝑥𝑛+1−𝑥𝑛

𝑦𝑛+1−𝑦𝑛
= 𝑙𝑖𝑚

𝑛→∞

𝐶𝑛+1
1 +

1

2
𝐶𝑛+1

2 +⋯+
1

𝑛+1
𝐶𝑛+1

𝑛+1−𝐶𝑛
1−

1

2
𝐶𝑛

2−⋯−
1

𝑛
𝐶𝑛

𝑛

1

𝑛+1
⋅2𝑛+2

                                      

= 𝑙𝑖𝑚
𝑛→∞

𝐶𝑛+1
1 −𝐶𝑛

1+
1

2
(𝐶𝑛+1

2 −𝐶𝑛
2)+⋯+

1

𝑛
(𝐶𝑛+1

𝑛 −𝐶𝑛
𝑛)+

1

𝑛+1
𝐶𝑛+1

𝑛+1

1

𝑛+1
⋅2𝑛+2

=   

5p 

= 𝑙𝑖𝑚
𝑛→∞

𝐶𝑛
0+

1

2
𝐶𝑛

1+⋯+
1

𝑛
𝐶𝑛

𝑛−1+
1

𝑛+1
𝐶𝑛

𝑛 

1

𝑛+1
⋅2𝑛+2

 =                                                                                                                                                                  
3p 

= 𝑙𝑖𝑚
𝑛→∞


= +

n

k

k

nC
k0 1

1

1

𝑛+1
⋅2𝑛+2

= 𝑙𝑖𝑚
𝑛→∞


=

+

+
+

n

k

k

nC
n0

1

1
1

1

1

𝑛+1
⋅2𝑛+2

=  

  

3p 

= 𝑙𝑖𝑚
𝑛→∞


=

+

+
+

n

k

k

nC
n 0

1

1
1

1

1

𝑛+1
⋅2𝑛+2

= 𝑙𝑖𝑚
𝑛→∞

2𝑛+1−1

2𝑛+2 =
1

2
   .                                                                

Conform lemei lui Stolz-Cesaro 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛

𝑦𝑛
 = 𝑙𝑖𝑚

𝑛→∞

𝑥𝑛+1−𝑥𝑛

𝑦𝑛+1−𝑦𝑛
=

1

2
 . 

 

 

3p 

 

(20p) 3. Se consideră  șirul  (𝑥𝑛)𝑛≥1 de numere reale definit prin 𝑥1 = √
1

2
  , 𝑥𝑛+1 = √

1+𝑥𝑛

2
  , 𝑛 ≥ 1.  

            Să se calculeze lim (
𝑛→∞

𝑥1 ⋅ 𝑥2⋅ … ⋅ 𝑥𝑛). 

Soluție: 

𝑥1 = 𝑐𝑜𝑠
𝜋

4
 = 𝑐𝑜𝑠

𝜋

22                                                                                                        2p 

𝑥2 = 𝑐𝑜𝑠
𝜋

8
= 𝑐𝑜𝑠

𝜋

23          2p 

Demonstrează prin inducţie matematică 𝑥𝑛 = 𝑐𝑜𝑠
𝜋

2𝑛+1  ,    𝑛 ∈ ℕ∗                                                                                                                                             4p 

Demonstrează 𝑥1 ⋅ 𝑥2⋅ … ⋅ 𝑥𝑛 = 𝑐𝑜𝑠
𝜋

22 ⋅ 𝑐𝑜𝑠
𝜋

23 ⋅ … ⋅ 𝑐𝑜𝑠
𝜋

2𝑛+1   =
1

2𝑛⋅𝑠𝑖𝑛
𝜋

2𝑛+1

 ,   𝑛 ∈ ℕ∗ 8p 
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lim (
𝑛→∞

𝑥1 ⋅ 𝑥2⋅ … ⋅ 𝑥𝑛) = 𝑙𝑖𝑚
𝑛→∞

  
1

2𝑛⋅𝑠𝑖𝑛
𝜋

2𝑛+1

  =  𝑙𝑖𝑚
𝑛→∞

𝜋

2𝑛+1

⋅𝑠𝑖𝑛
𝜋

2𝑛+1

⋅
2

𝜋
= 

2

𝜋
 . 

4p 

 

(20p) 4. Pentru fiecare 𝑛 ∈ ℕ considerăm numerele 𝑎𝑛 , 𝑏𝑛 ∈ ℕ astfel încât (2 + √3)
𝑛

= 𝑎𝑛 +

𝑏𝑛√3. 

a) Arătați că (2 − √3)
𝑛

= 𝑎𝑛 − 𝑏𝑛√3 pentru orice 𝑛 ∈ ℕ. 

b) Determinați 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛

𝑏𝑛
 . 

Soluție: 

a)   

Fie 𝑐𝑛, 𝑑𝑛 ∈ ℤ  cu 𝑐𝑛 − 𝑑𝑛√3 = (2 − √3)
𝑛

. 

Arătăm că afirmația  𝑃(𝑛): (𝑎𝑛, 𝑏𝑛) = (𝑐𝑛 , 𝑑𝑛) este adevărată pentru orice 𝑛 ∈ ℕ 

Inducție  

Verificare: 𝑃(0): 𝑐0 − 𝑑0√3 = (2 − √3)
0

= 1 ⇒ 𝑐0 = 1, 𝑑0 = 0 

                Cum 𝑎0 + 𝑏0√3 = (2 + √3)
0

= 1 ⇒ 𝑎0 = 1, 𝑏0 = 0 

⇒ (𝑎0, 𝑏0) = (1,0) = (𝑐0, 𝑑0) ⇒  𝑃(0) adevărată 

 

 

 

 

 

2p 

 Inducția : 

𝑃(𝑛) ⇒ 𝑃(𝑛 + 1) . Presupunem că pentru orice 𝑛 ∈ ℕ oarecare are loc 𝑃(𝑛) și demonstrăm că 

atunci are loc și 𝑃(𝑛 + 1). 

𝑃(𝑛) ⇔ (𝑎𝑛, 𝑏𝑛) = (𝑐𝑛, 𝑑𝑛)          (1)  

𝑎𝑛+1 + 𝑏𝑛+1√3 = (2 + √3)
𝑛+1

= (2 + √3)
𝑛

⋅ (2 + √3) = (𝑎𝑛 + 𝑏𝑛√3)(2 + √3) = 

            =(2𝑎𝑛 + 3𝑏𝑛) + (𝑎𝑛 + 2𝑏𝑛)√3 ⇒ 𝑎𝑛+1 = 2𝑎𝑛 + 3𝑏𝑛  ș𝑖 𝑏𝑛+1 = 𝑎𝑛 + 2𝑏𝑛            (2) 

 

 

 

 

 

 

4p 

𝑐𝑛+1 − 𝑑𝑛+1 = (2 − √3)
𝑛+1

= (2 − √3)
𝑛

(2 − √3) = (𝑐𝑛 − 𝑑𝑛√3)
𝑛

(2 − √3)= 

=(2𝑐𝑛 + 3𝑑𝑛) − (𝑐𝑛 + 2𝑑𝑛)√3 ⇒ 𝑐𝑛+1 = 2𝑐𝑛 + 3𝑑𝑛  ș𝑖 𝑑𝑛+1 = 𝑐𝑛 + 2𝑑𝑛            (3) 

Din (1), (2), (3) ⇒ (𝑎𝑛+1, 𝑏𝑛+1) = (𝑐𝑛+1 , 𝑑𝑛+1) ⇒  𝑃(𝑛 + 1) adevărată 

⇒ 𝑃(𝑛), (∀)𝑛 ∈ ℕ ⇔ (2 − √3)
𝑛

= 𝑎𝑛 − 𝑏𝑛√3  , (∀)𝑛 ∈ ℕ 

 

 

 

 

4p 

 

b)  

 {
𝑎𝑛 + 𝑏𝑛√3 = (2 + √3)

𝑛

𝑎𝑛 − 𝑏𝑛√3 = (2 − √3)
𝑛   ⇔ {

2𝑎𝑛 = (2 + √3)
𝑛

+ (2 − √3)
𝑛

2𝑏𝑛√3 = (2 + √3)
𝑛

− (2 − √3)
𝑛 

 

⇔ {
𝑎𝑛 =

(2+√3)
𝑛

+(2−√3)
𝑛

2

𝑏𝑛 =
(2+√3)

𝑛
−(2−√3)

𝑛

2√3

 

 

 

 

 

 

4p 
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𝑎𝑛

𝑏𝑛
=

√3⋅[(2+√3)
𝑛

+(2−√3)
𝑛

]

(2+√3)
𝑛

−(2−√3)
𝑛 =

√3(1+(
2−√3

2+√3
)

𝑛

)

1−(
2−√3

2+√3
)

𝑛   

 

Cum 0 <
2−√3

2+√3
< 1 ⇒ 𝑙𝑖𝑚

𝑛→∞
(

2−√3

2+√3
)

𝑛

= 0 

 

=> 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛

𝑏𝑛
=

√3(1+0)

1−0
= √3 . 

2p 

 

 

 

2p 

 

 

2p 
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